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Nonequilibrium molecular dynamics �NEMD� calculations of the bulk viscosity of the triple point Lennard-
Jones fluid are performed with the aim of investigating the origin of the observed disagreement between
Green-Kubo estimates and previous NEMD data. We show that a careful application of the Doll’s perturbation
field, the dynamical NEMD method, the instantaneous form of the perturbation and the “subtraction technique”
provides a NEMD estimate of the bulk viscosity at zero field in full agreement with the value obtained by the
Green-Kubo formula. As previously reported for the shear viscosity, we find that the bulk viscosity exhibits a
large linear regime with the field intensity.
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I. INTRODUCTION

The calculation of the hydrodynamics transport coeffi-
cients for model systems is a noticeable success of molecular
dynamics �MD� �1�. The standard method to compute linear
transport coefficients by molecular dynamics simulations
makes use of the Green-Kubo formulas �2–4�. Based on the
dissipation-fluctuation theorem, Green-Kubo formulas allow
us to compute linear transport coefficients from dynamical
fluctuations of suitably defined microscopic currents at equi-
librium. The Green-Kubo methodology can be easily imple-
mented in a simulation of the equilibrium state and all trans-
port coefficients can be obtained in the same calculations.

An alternative approach to the computation of transport
coefficients is to mimic the appropriate nonequilibrium state.
This can be generally obtained by applying a suitable exter-
nal force and measuring the response related to the corre-
sponding transport coefficient. Nonequilibrium molecular
dynamics �NEMD� has been developed along these lines al-
ready in the early 1980s. It was soon realized that some
paradigms of equilibrium molecular dynamics �EMD� had to
be relaxed to mimic nonequilibrium processes. In particular,
the use of periodic boundary conditions �PBC�, a key ingre-
dient of EMD to minimize finite size effects, is often incom-
patible with the nonequilibrium state of interest. In many
interesting cases the external field acts through the bound-
aries, for instance, a thermal gradient or a velocity gradient,
and the simulation of such a system can require abandoning
the use of PBC in favor of less convenient boundaries. This
was, for instance, the case of a system under the action of a
thermal gradient �5,6� or in a Poiseuille flow �7�. Nonperi-
odic boundaries however require quite large systems which
had limited the early use of direct nonequilibrium methods.

To circumvent these limitations the so-called “synthetic”
NEMD algorithms have been developed and extensively
used in the exploration of nonequilibrium phenomena �8�.
The general idea behind this class of algorithms is to replace
the external force by an effective, PBC compatible, bulk field
which, in the limit of vanishing intensity, excites the same
response as the original external force. In this way the linear
regime can, in principle, be explored without abandoning the
use of PBC and therefore avoiding large finite size effects. In
the case of fluid flows this technique requires the use of
periodic but moving boundary conditions �8,9�. It should be
noted that, after restoring the use of PBC, the heat produced
by the external bulk field must be removed by a “bulk” ther-
mostatting mechanism such as, for instance, a Nose-Hoover
thermostat. We want to emphasize that the theoretical foun-
dation of this class of algorithm is the linear response theory
and their use beyond the linear regime is somewhat arbitrary.
In this context the “subtraction technique” �11,12� is a very
useful tool �at least for simple systems in which the response
time is not longer than the typical Lyapunov time� to perform
the vanishing perturbation limit. For almost all transport co-
efficients a good agreement between GK method and syn-
thetic NEMD methods has been found �13–19�. The bulk
viscosity makes a noticeable exception. In Fig. 1 we show
the results of several computations of the bulk viscosity of a
Lennard-Jones fluid close to the triple point. Most of these
works adopted the Green-Kubo method �20–25� and found
very similar results. Only two NEMD calculations have been
performed so far �10,26� and they both provide values of the
bulk viscosity 30–50% higher than the Green-Kubo values.
Note that finite size effects cannot explain the observed dis-
crepancies.

In the present work we reconsider the calculation of the
bulk viscosity of the Lennard-Jones fluid close to the triple
point and show that a careful application of the well-known
Doll’s synthetic algorithm provides estimates of the bulk vis-
cosity in full agreement with the Green-Kubo values. The
paper is organized as follows. In Sec. II we provide the nec-
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essary theoretical background by discussing both the Green-
Kubo formula for the bulk viscosity coefficient and the dy-
namical NEMD approach we have adopted. Section III deals
with details of the simulation such as the time dependence of
the perturbation, the simulation box, and the implementation
of the dynamical approach to NEMD. In Sec. IV we collect
our results and in Sec. V we provide some concluding re-
marks. In the Appendix we show that, in the linear regime,
the synthetic perturbation for the viscosity is, as generally
assumed, proportional to the velocity field produced.

II. THEORETICAL BACKGROUND

A. Hydrodynamics and microscopic identification
of local fields

The bulk viscosity is one of the transport coefficients in-
troduced in hydrodynamics �4�. In this theory, the fluid is
described by classical fields which, in the case of a simple
neutral system, are the mass, momentum and energy density
fields. Partial differential equations derived from the conti-
nuity equation, supplemented by the so-called “constitutive
relations” and by the local equilibrium hypothesis, provide a
closed theoretical framework for the evolution of these
fields. The “constitutive relations” are linear relations be-
tween the external forces acting on the system and the ex-
cited flows, the coefficients being the transport coefficients
specific for each material. The viscosity coefficients, namely
the bulk viscosity, �v, and the shear viscosity, �s, are defined
by the Newton constitutive law

P= �r�,t� = �p̄�r�,t� − ��v −
2

3
�s��� · v��r�,t��I=

− �s	�� v��r�,t� + ��� v��r�,t��†
 , �1�

where P= is the pressure tensor, v� the velocity field, and I= the
identity tensor. p̄ represents the hydrostatic pressure, which,
according to the local equilibrium hypothesis, can be ex-
pressed in terms of the mass density, m�r� , t�=mn�r� , t�, and

the energy density, e�r� , t�, by the equilibrium equation of
state

p̄�r�,t� = Peq�mn�r�,t�,e�r�,t�� , �2�

where n�r� , t� is the local number density. If the velocity field
reduces to the particular form v��r� , t�=r�f�t�, with f�t� a yet
unspecified function of time, the Newton law reduces to

1

3
Tr�P= − p̄I=� = − 3�vf�t� , �3�

where the symbol Tr stands for the trace of the tensor.
According to Irving and Kirkwood �27�, any macroscopic

hydrodynamic field J�r� , t� can be obtained from the statistical
average, over the time dependent ensemble, ��� , t�, of a mi-

croscopic observable Ĵ���, where �= 	r�i , p� i
 �i=1,N� is the
phase-space point of the N particles system. In the specific
case of the pressure tensor we have �4�

P= �r�,t� =��
i=1

N

��r� − r�i�� p� ip� i

m
+ r�iF� i����,t�� , �4�

where F� i is the internal force acting on particle i. The num-
ber and energy densities can also be expressed as

n�r�,t� =��
i=1

N

��r� − r�i����,t�� �5�

e�r�,t� =��
i=1

N

��r� − r�i�� �p� i�2

2m
+

1

2�
j�i

��rij�����,t�� ,

�6�

where ��r� represents the pair potential of our model system.
The local hydrostatic pressure p̄�r� , t� is the trace of the pres-
sure tensor and, within the local equilibrium hypothesis, its
fluctuations around the equilibrium value p0�n0 ,e0� can be
expressed as

p̄�r�,t� = p0 + �Peq

�e


e0

�e�r�,t� − e0� + �Peq

�n


n0

�n�r�,t� − n0� .

�7�

The bulk viscosity coefficient in terms of statistical averages
is then obtained, for velocity fields of the form prescribed
above, by replacing the fields in Eq. �3� with the appropriate
dynamical ensemble averages. Furthermore, in order to en-
sure the validity of local equilibrium, it is required to take
the “hydrodynamic limit:”

�v = − lim
�→0

lim
k→0

Tr�P̃
=

�k�,�� − p̃̄�k�,��I=�

9 f̃���
, �8�

where J̃�k� ,��= 1
V��dr�dt exp�ik� ·r��exp�i�t�J�r� , t� is the usual

Fourier transform �in space and in time� of the field.

B. Green-Kubo formula

Equation �8� expresses the bulk viscosity as an average on
the nonequilibrium distribution ��� , t�. When the system is
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FIG. 1. Review of previous results for the bulk viscosity of a
simple Lennard-Jones fluid close to the triple point versus the sys-
tem size. The NEMD data are from Ref. �26� ��� and Ref. �10� ���,
while the EMD are from Ref. �20� ���, Ref. �21� ���, Ref. �22�
���, Ref. �23� ���, Ref. �24� ���, and Ref. �25� ���. The viscosity
is expressed in Lennard-Jones natural units.
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close to equilibrium �linear hydrodynamics� it is possible to
rewrite it by the Green-Kubo formula �28,29�:

�v = �V�
0

+	

dt�Ĵ�t�Ĵ�0��0, �9�

with

Ĵ�t� = �P̂�t� − �P̂�� −
1

V
��Peq

�e


n
�Ĥ�t� − �Ĥ��� , �10�

where V, e are the volume and internal energy per unit vol-

ume of the system, respectively. P̂ and Ĥ are the dynamical
variables corresponding to the thermodynamic pressure and
energy

P̂�t� = lim
k→0

1

3V
Tr�P=̃̂ �k�,t�� =

1

3V
�
i=1

N

Tr� p� ip� i

m
+ r�iF� i� , �11�

Ĥ�t� = lim
k→0

ẽ̂�k�,t� = �
i=1

N � �p� i�2

2m
+

1

2�
j�i

��rij�� . �12�

Equation �10� is the general expression of the current related
to the bulk viscosity coefficients in the general case in which
the energy fluctuates. If experiments are conducted in the
microcanonic ensemble the energy fluctuations vanish and
the more familiar expression of the Green-Kubo formula is
obtained �4�.

C. “Doll’s” perturbation and the “dynamical approach” to
nonequilibrium molecular dynamics

As described in the introduction, the alternative route to
transport properties is to consider the system subjected to an
external perturbation able to mimic the “thermodynamic
force” which excites the appropriate nonequilibrium flux in-
side the system. In the present case the “thermodynamic

force” is the macroscopic velocity gradient, �� v� , while the
corresponding flux is the deviation of the pressure from its
local equilibrium value, 1

3Tr�P= �− p̄. The bulk external force
to be used in such experiments is known as “Doll’s” pertur-
bation:

Ĥ���,t� = �
i

N

r�ip� i:��� u��r�i,t��T, �13�

where �� u��r� , t� is the required external field. This perturba-
tion was proposed by Luttinger �30� and adopted in a mo-
lecular dynamics simulation by Hoover et al. �26,32�. In the
Appendix we will show that, in the linear regime, the mac-
roscopic velocity field v��r� , t� induced by this perturbation
coincides with the imposed external constraint u��r� , t� in the
long wavelength limit

v�̃�k� = 0,�� = u�̃�k� = 0,�� . �14�

Once we are able to induce the required hydrodynamic flux,
we need a procedure to compute the average of the response
on the nonequilibrium ensemble.

To this aim we can exploit the “Onsager-Kubo” relation
�11,12,31�. Calling S�t� the time evolution operator of the
perturbed dynamics, the following relation holds for the non-

equilibrium average of the generic microscopic flux Ĵ:

�Ĵ�t �� Ĵ������,t�d�

=� Ĵ���S†�t��0���d� =� S�t�J����0���d�

=� Ĵ�t��0���d� � �Ĵ�t��0, �15�

where S†�t� is the adjoint of S�t� and �0��� is the ensemble
distribution at the time t=0. If the perturbation is switched
on at time t=0 from an equilibrium state, �0 is the equilib-
rium distribution and the Onsager-Kubo relation �15� allows
us to compute the required average in a rigorous way. In-
deed, via standard equilibrium MD simulation, we can obtain
a set of statistically independent configurations 	�i
 distrib-
uted according to �0���. Starting from those configurations
we can follow the evolution of the system under the per-
turbed dynamics and obtain the required nonequilibrium av-
erage as the average of the evolved observable over the ini-
tial distribution according to the Onsager-Kubo relation.

When a large perturbation is applied, a thermostatting
mechanism needs to be added to the equation of motion and
the response can depend on it. Conversely, for vanishingly
small perturbations the standard form of linear response
theory �3,4� holds and the response depends only on the ap-
plied perturbation. In this limit, however, an additional nu-
merical problem is encountered. The fluctuations of the mi-
croscopic variables are quite large and dominate the response
in the limit of vanishing perturbations. In simple systems,
where the response time is comparable to the Lyapunov time
of the exponential divergence of nearby starting trajectories,
the “subtraction technique” can be used to extract the signal
out of the statistical noise �11,12�. If S0�t� is the evolution
operator representing the unperturbed dynamics with

�S0�t�Ĵ�0=0, the average values �S�t�Ĵ−S0�t�Ĵ�0 and �S�t�Ĵ�0
are equal. On the other hand, their variances are very differ-

ent: the thermal fluctuations of S�t�Ĵ and S0�t�Ĵ are highly
correlated and therefore largely cancel each other. This is
true for times short enough. At large times the variance of the
difference estimator becomes twice the variance of the
simple estimator.

III. SIMULATION TECHNIQUE

A. Impulsive external field

As mentioned above, the current associated to the bulk
viscosity to be used both in the Green-Kubo formula or in
the NEMD experiments depends on the statistical ensemble
chosen to conduct the experiment. In all previous equilib-
rium calculations, as well as in the present one, the microca-
nonical ensemble was chosen since the current reduces to the
pressure tensor fluctuations without the need of evaluating
the additional term related to the energy fluctuations.
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In NEMD, the Doll’s perturbation for the bulk viscosity is
a pure contraction or expansion of the volume so that a con-
stant perturbation in time, f�t�=
, will correspond to an ex-
ponential contraction/expansion of the volume �see next sub-
section�, obviously an impractical way to extract the bulk
viscosity coefficient. Alternative forms of f�t� can be an os-
cillating function f�t�=
 sin�t� and an impulsive perturbation
f�t�=
��t�, where 
 is the intensity of the field. The oscillat-
ing form, used in previous NEMD calculations, requires ther-
mostatting the nonequilibrium trajectory in order to reach a
steady state and the extended form of the current with the
energy fluctuation term must be used. On the other hand, the
impulsive perturbation acts on the system for an infinitesimal
time, no thermostatting mechanism is necessary, and the dy-
namics after the impulse is the equilibrium dynamics for the
isolated system. This fact greatly simplifies the NEMD ex-
periment and the form of the flux, Eq. �10�. For each initial
configuration �i, the energy and the volume of the system
change from their initial values H0 and V0 of the equilibrium

system, to the time independent values Hi�=Ĥi�t�0+� and

V�= V̂�t�0+� �note that all replicas undergo the same volume
change�. In order to obtain the appropriate flux in Eq. �10�
we have to calculate only the dynamical variable P̂�t� and its
average asymptotic value:

p	 = lim
t→	

�P̂�t, �16�

where �¯�t are averages over the nonequilibrium distribu-
tion at time t. Note that p	 is not a properly defined pressure
because the corresponding ensemble is not well-defined
since each member of the ensemble has a different energy. It

is rather the asymptotic large time value of �P̂�t that needs to
be subtracted to it in order to make the current integrable in
time to provide the associated transport coefficient.

B. Periodic boundary conditions

The explicit form of the Doll’s perturbation field with a
homogeneous velocity gradient �u= f�t�I, is not compatible
with the periodic boundary conditions of MD. However the
periodicity of the system can be restored if we allow the box
matrix H= to evolve according to the external flow �33�

H=̇ �t� = �u
=

· H= �t� . �17�

Starting with a cubic cell of edge L��0�=L0�	�=x ,y ,z
�, and
applying a velocity field �u=
��t�I we get

L��t  0+� = L0e
 � L0�1 + 
� . �18�

Similarly, the perturbation induces a discontinuity in the tra-
jectory of the system

r�̇i =
p� i

m
+ 
��t�r�i, p�̇ i = F� i − 
��t�p� i �19�

which correspond to

r�i�0+� = r�i�0−�e
 � r�i�0−��1 + 
� ,

p� i�0+� = p� i�0−�e−
 � p� i�0−��1 − 
� . �20�

Therefore, the effect of the impulsive perturbation is to apply
a homogeneous contraction �expansion� of the position space
and a homogeneous expansion �contraction� in the momen-
tum space of the system. Substituting Eqs. �20� in the per-

turbed Hamiltonian Ĥ�0+�=Ĥ0+
�ir�i�0+� · p� i�0+� and using
Eq. �11�, the variation of energy induced by the impulsive
field is

Ĥ�0+� − Ĥ�0−� = − P̂�0−�dV + O�
2� ,

where V is the volume of the system. Taking the ensemble
average over the equilibrium distribution at t=0−, we recover
the first principle of thermodynamics

�E = − pdV . �21�

C. Bulk viscosity computation

With the impulsive field of previous section, Eq. �8� for
the bulk viscosity reduces to

�v = lim
�→0

lim
k→0

−

1

3
Tr�P̃

=
− p̃̄I=�

Tr���̃ v��
= lim


→0
−

1

3

�

0

	

��P̂�t − p	�dt .

�22�

Using the Onsager-Kubo relation to rewrite nonequilibrium
ensemble averages in terms of equilibrium averages of
evolved observables, and applying the subtraction technique
described above, we obtain

�v = lim

→0

−
1

3

�

0

	

	��S�t�P̂ − S0�t�P̂�0� − �p	 − p0�
dt ,

�23�

where S�t� and S0�t� are the evolution operators for the per-
turbed and equilibrium dynamics respectively. Note that p0

= Peq�Ĥ0 ,n0� is the pressure of the equilibrium microcanoni-
cal system, while as mentioned above, p	 is not a properly
defined averaged pressure.

D. Simulations scheme and numerical details

As already mentioned, the operative procedure to com-
pute Eq. �23� is to select a set of statistically uncorrelated
equilibrium configurations of the system 	�i
, for each mem-
ber of the set to generate both the equilibrium and the non-

equilibrium evolutions, and to compute the term ��S�t�P̂
−S0�t�P̂�0� up to a time tr, as the arithmetic mean over the
set. The time tr is the typical time the individual nonequilib-

rium system Ci of energy Ĥi�0+� takes to relax from the
perturbed initial configuration to its equilibrium state. The
additional offset term, involving p	, is the stationary value of
that average beyond tr. In order to reduce the statistical noise
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on this term we have computed, for each individual nonequi-
librium trajectory, the time average of the microscopic “pres-
sure” between tr and 2tr, and we have estimated the offset as
the arithmetic mean of those time averages over all nonequi-
librium trajectories.

The system considered in this work is a simple fluid of
N=864 particles interacting by the Lennard-Jones potential,
in a thermodynamic state close to the triple point. In the
following all quantities will be expressed in Lennard-Jones
units: 
=1, �=1, m=1. The potential has been truncated at
rcut=2.5 and shifted to avoid discontinuity at rc. Moreover,
for r� �2.4:2.6� the potential has been replaced with a cubic
polynomial in order to avoid discontinuities in the forces at
the cutoff. The equations of motion have been integrated
through a velocity Verlet algorithm with an integration step
h=0.004 436.

The unperturbed trajectory �see Fig. 2� has been inte-
grated for 9.9�106 integration steps. No thermalizing device
is added to the equilibrium dynamics so that a sampling of
the microcanonical ensemble is obtained. This equilibrium
trajectory was used to compute the bulk viscosity through the
Green-Kubo formula. The time of saturation of the Green-
Kubo integral, i.e., the decorrelation time of the pressure
fluctuations at equilibrium, has been used as an estimate of
the relaxation time tr. The set of initial equilibrium configu-
rations are therefore selected as equilibrium configurations a
time tr apart from each other along the equilibrium trajectory.
In order to calculate the response of the system to the impul-

sive external field, S�t�P̂, the perturbed trajectories have
been integrated for a time tr and extended to 2tr in order to
evaluate the offset term �see Fig. 2�.

IV. RESULTS

The thermodynamic state of the equilibrium system is re-
ported in Table I. This state is very close to that used in
previous studies �10,20–26�.

A. Green-Kubo results

In Fig. 3 we report the Green-Kubo integrand RGK�t�
=�V�P̂�t�P̂�0��0. After a rapid relaxation in about 0.22 time
units, the curve exhibits a long time tail which vanishes only
beyond t=2 �see the inset�. Although the noise level on the
time correlation function is quite small, the noise on its time
integral, as obtained by a simple trapezoidal rule, results in
being quite large because of the long tail. In order to get a
smoothed signal we have attempted to replace the data be-
yond t=0.22 with two different analytic functions, fitted to
the data in the time interval �0.22:2.0�. We have assumed a
power law behavior Rv

GK�t��at−b and an exponential behav-
ior RGK�t��ae−bt �the power law behavior is compatible with
Hoover’s hypothesis �26�: �v

GK���=a�+b���, i.e., RGK�t�
� t−3/2�. Values of the fitting parameters are reported in Table
II while the data and the fitting functions are compared in
Fig. 4.

From Table II and Fig. 4, we conclude that the exponen-
tial behavior is a better representation of our data. Integration
of the correlation function supplemented by our best expo-
nential fit provides the behavior in Fig. 5 and the following
value for the viscosity

�v
GK = 1.22 � 0.03.

B. NEMD results

In Table III we report the details and thermodynamic re-
sults from the performed nonequilibrium experiments. Note

TABLE I. Thermodynamic equilibrium state. The simulated sys-
tem is in a state very close to that used in most of previous MD
studies of the bulk viscosity.

Density �Energy�/N Temp. Pressure

0.8442 −4.112561�5� 0.72111�4� 0.8978�3�

FIG. 2. Simulations scheme: a long unperturbed trajectory of the
system is used to sample initial conditions for segment of perturbed
trajectories. Each integration of the perturbed equations of motion
has been integrated for twice the estimated signal relaxation time.
This is needed to evaluate the thermodynamic pressure of the
segments.

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

R
G

K

time

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

1 2 3 4 5

R
G

K

FIG. 3. Green-Kubo integrand �see Eq. �9��. In the inset we
show an enlargement of the tail.

TABLE II. Fitting parameters for the tail of the Green-Kubo
integral.

Fitting
interval a b �2 / ndf

�=atb t� �0.22:2.0� 0.0160�2� −1.09�1� 1�10−5

�=ae−bt t� �0.22:2.0� 0.1004�6� 1.83�1� 2�10−6
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that positive 
 corresponds to nearly adiabatically expanded
systems and therefore to reduced temperatures �remember
that the systems remain isolated after the impulsive external
perturbation at t=0�. In the second to last column, we report
the average variation of the total energy �E due to the im-
pulsive perturbation. Comparing the data in the last two col-
umns, we can verify the validity of Eq. �21� in the limit of
small 
 ��
��0.002�. In order to analyze the response of the
system, we need to separately discuss the various contribu-
tions to the integrand in Eq. �23�. For the sake of clarity, let
us define the following quantities:

��t� =
��S�t�P̂ − S0�t�P̂��0

− 3

, �24�

�	 =
p	 − p0

− 3

, �25�

R�t,
� = ��t� − �	, �26�

�v�t,
� = �
0

t

dsR�s,
� . �27�

The newtonian bulk viscosity is the zero field-infinite time
limit of �v�t ,
�. In Table IV and Fig. 6, we report data for
��0� and �	 defined in Eqs. �24� and �25�.

We note that the error on �	 grows when �
� decreases
while the error on ��0� remains roughly constant. This is the
effect of the subtraction technique that improves the signal to
noise ratio for short t only while it has no effect at large time
where �	 has to be calculated. A less noisy estimate of �	

for �
��0.002 can be obtained by linear interpolation of the
less noisy data at larger absolute values of the perturbation
�see Fig. 6�.

In Fig. 7 we show the values of the integrand in Eq. �23�
at t=0+, i.e., R�0�=��0�−�	. At 
=0 we display RGK�0�. As
predicted by linear response theory, we observe that the
NEMD response tends to the quadratic fluctuations of the
pressure at equilibrium in the limit �
�→0.

In Fig. 8 we show the estimates of the �v�t ,
� curves. We
note that, as �
� decreases, the noise level at large time in-
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0.001

0.01

0.1
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FIG. 4. Tail of the Green-Kubo integrand RGK�t� and its fitting
functions. Data are normalized by the initial value RGK�0�. The
fitting range is t� �0.22:2�. In the left panel we show �in linear-log
scale� the exponential fit, while in the right panel we show �in
log-log scale� the power law fit.
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FIG. 5. Green-Kubo integral: �v�t�=�0
t dsRGK�s�. The horizontal

plateau value is our Green-Kubo estimate of the bulk viscosity
coefficient.

TABLE III. Thermodynamic properties of the system subjected to the external perturbation. As for the p	, the values of the temperature
T and of the energy variation �E are obtained as the arithmetic mean of the corresponding properties over all nonequilibrium trajectories, see
Sec. III D. By comparing the data in the last two columns, we can verify the validity of Eq. �21�. As explained in Sec. III B, this equation
states the consistency of the “Doll’s” perturbation with the first principle of thermodynamics.


 Nseg N /V T �E /N −p0dV /N

0.05 9000 0.7292 0.5408�2� 0.2191�1� 0.2023�2�
0.02 9000 0.7955 0.6174�2� 0.01049�6� 0.02648�6�
0.005 13000 0.8317 0.6912�1� −0.01080�2� −0.02160�1�
0.002 16400 0.8392 0.70892�9� −0.005538�5� −0.006386�5�
5�10−4 16500 0.8429 0.71726�8� −0.001539�1� −0.001511�2�
2�10−4 16500 0.8437 0.71909�9� −6.284�5��10−4 −6.263�5��10−4

0 0.8442 0.72111�4�
−2�10−4 12000 0.8447 0.7220�1� 6.432�6��10−4 6.352�5��10−4

−5�10−4 16500 0.8455 0.72335�9� 0.001645�1� 0.001660�1�
−0.002 16400 0.8493 0.7338�1� 0.007222�5� 0.006360�5�
−0.005 13000 0.8570 0.7533�1� 0.02133�2� 0.01585�1�
−0.02 9000 0.8969 0.86865�2� 0.1603�1� 0.06218�7�
−0.05 9000 0.9846 1.1894�5� 0.9154�3� 0.6539�5�
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creases considerably. This signals again the limit of applica-
bility of the subtraction technique. Similar to the Green-
Kubo case of the previous section, a less noisy estimator of
the viscosity is obtained by integrating a response function in
which the long time tail is replaced by an exponentially de-
caying behavior fitted to the data at large time.

Finally, in Table IV and Fig. 9 we report the values of
�v�
�=limt→	�v�t ,
�. As expected the data in the small 

region ��
��0.005� are in agreement with the Green-Kubo
estimate of the viscosity. Although equilibrium and NEMD
data are in agreement within error bars, �v�
� data for �
�
�0.005 exhibit an unexpected small error bar and appear to
be systematically below the Green-Kubo prediction. This is
probably a small bias of our extrapolation procedure. The
large noise in the tail of the response function forces us to
perform the fit in a time interval considerably smaller than
for larger perturbations �see Table IV�. This might lead to
underestimated errors �see Fig. 8� and to an estimate of the
asymptotic value slightly lower than the correct value.

C. Nonlinear regime

The results of the previous section show the consistency
between Green-Kubo and NEMD estimates of the bulk vis-
cosity coefficient. However at variance with other coeffi-
cients, such as, for instance, the shear viscosity, where a
linear regime over several orders of magnitude of the inten-
sity of the external perturbation is observed �up to roughly
0.05� �35�, in the present case the linear regime is apparently
much reduced. This can be clearly seen in Fig. 7 where the
NEMD results for R�0+,
� matches the GK value with a
finite slope suggesting that a linear expansion of the response
function with the perturbation field is never justified. The
same effect is seen for the viscosity in Fig. 9 �see the inset�,
although it is less pronounced and the much larger noise
makes the observation less conclusive. In order to resolve
this apparent paradox we must consider that the present per-
turbation, a contraction/expansion of the volume, excites the
correct response and, at the same time, changes the thermo-
dynamic state of the system. To correctly discuss the rheo-
logical nonlinear behavior of the fluid we should remove the
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FIG. 7. Initial time response R�0+� versus the perturbation.
NEMD data tends to the corresponding Green-Kubo value in the
limit of small 
.

TABLE IV. In the second and in the third column we report the data for ��0� and �	, respectively �see
Eqs. �24� and �25�� while, in the last column, the bulk viscosity for the corresponding intensity of the
perturbation is shown. The time interval used for fitting the exponential function to the data is also reported
in the second to last column.


 ��0� �	 Range for the fit �v

0.05 25.132�5� 13.757�6� 0.44:2.66�500 pts� 3.77�2�
0.02 32.884�5� 21.382�7� 0.44:2.66�500 pts� 1.39�2�
0.005 37.778�4� 25.61�2� 0.44:2.66�500 pts� 1.25�6�
0.002 38.863�4� 26.53�4� 0.44:2.22�400 pts� 1.2�1�
0.0005 39.415�4� 27.1�2� 0.22:1.22�230 pts� 1.15�6�
0.0002 39.527�4� 26.6�4� 0.22:1.22�230 pts� 1.15�6�
0�GK� 1.22�3�
−0.0002 39.663�5� 26.9�5� 0.22:1.22�230 pts� 1.13�6�
−0.0005 39.787�4� 27.2�2� 0.22:1.22�230 pts� 1.15�6�
−0.002 40.351�4� 27.80�4� 0.44:2.22�400 pts� 1.2�1�
−0.005 41.499�5� 28.74�2� 0.44:2.66�500 pts� 1.18�5�
−0.02 47.888�6� 34.116�7� 0.44:2.66�500 pts� 1.13�2�
−0.05 64.387�8� 47.770�5� 0.44:2.66�500 pts� 1.15�2�
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FIG. 6. Trend of the offset, �	, defined in Eq. �25�, as a function
of the applied deformation 
. For �
��0.002 the values are affected
by a large error. An interpolation of the other data is used to reduce
the noise in this region.
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pure thermodynamic contribution to the response. Let us
consider the viscosity as a function of the perturbation, the
internal energy and the volume of the system: �v
=�v�
 ,e ,V�. In the present case of impulsive perturbation we
have V�0+�=V0�1+3
+O�
2��, and E�0+�=E0− p0�V�0+�
−V0�+O�
2�=E0−3
p0V0+O�
2� where E0, V0, and p0 rep-
resent the energy, volume, and pressure of the equilibrium
system respectively. The correct small 
 expansion for the
viscosity is therefore

�v�
,e,V� = �v + � ��v

�

+ 3V� ��v

�V
− p

��v

�E
��


=0

 + O�
2� .

�28�

A similar expansion holds for R�t�, in particular for its value
at t=0+

R�0+;
,e,V�

= R�0+�
=0 + � �R�0+�
�


+ 3V� �R�0+�
�V

− p
�R�0+�

�E
��


=0



+ O�
2� . �29�

We have performed a series of EMD simulations at volumes
and internal energies around the thermodynamic point stud-
ied and we have estimated the derivatives in equations �28�
and �29� by the central difference formula. In Table V we
report the estimated values of the derivatives. With those
values the term in square brackets in Eq. �29� amounts to
−50�7 to be compared with −59�2, the value of the esti-
mated slope of the response in NEMD data �see Fig. 10�. As
for the viscosity itself, the value in the square brackets in Eq.
�28� is 7�2 to be compared with 6�1, the estimated slope
of the viscosity in Fig. 9. When data for R�0+� and �v are
corrected by these thermodynamic terms, a large linear re-
gime appears, as reported in Figs. 10 and 11. This behavior
confirms the simple LJ fluid as a true linear fluid in a large
range of perturbations, the genuine rheological nonlinear be-
havior appearing only beyond �
��0.02.

V. CONCLUSIONS

In the present paper we have reported nonequilibrium mo-
lecular dynamics calculations of the bulk viscosity of the
Lennard-Jones fluid at triple point. Among the transport co-
efficients of the simple fluid, the bulk viscosity was the only
one for which NEMD results, from two independent previ-
ous studies, did not agree with the Green-Kubo estimates
�see Fig. 1�. Surprisingly, this unexpected failure of the linear
response theory remained unexplored for almost 25 years. In
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0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.050.020-0.02-0.05

η v

ε

1

1.1

1.2

1.3

1.4

1.5

0.0050.0020-0.002-0.005

NEMD
Green-Kubo

FIG. 9. Values of �v calculated in the present work. In the inset
we present a magnification of the small 
 region. A good agreement
with the Green-Kubo result is obtained.

TABLE V. Estimates of the thermodynamic derivatives in Eqs.
�28� and �29� at the considered state point as obtained by the central
difference formula.

��v / �V=−0.0006�10� ��v / �E=−0.0024�8�
�R�0� / �V=−0.014�2� �R�0� / �E=0.0021�9�
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the present work we have resolved this apparent contradic-
tion and found a full agreement between the NEMD and
EMD estimates for the bulk viscosity.

We have applied the Doll’s perturbation field to excite the
relevant flux in the system. At variance with the shear or
elongational viscosity cases where the external perturbation
is a superposition of a rotation and a deformation of the
system at constant volume �31,36�, the field needed to excite
the flux related to the bulk viscosity coefficient is a
compression/expansion of the volume at constant shape.
Such a perturbation excites the desired flux but also changes
the thermodynamic state of the system. As a consequence,
the relevant flux depends on the conditions at which the non-
equilibrium experiment is conducted and, similarly, the
Green-Kubo formula depends on the equilibrium ensemble
used �29�. At equilibrium the microcanonical ensemble
should be chosen to simplify the Green-Kubo analysis. As
for the nonequilibrium experiments, two different techniques
can be applied. One can apply the stationary NEMD method
in which the system is driver toward a stationary nonequilib-
rium state by applying a periodic compression/expansion of
the system. If the heat produced by the external field is re-
moved by a thermostatting mechanism, the steady state can
be maintained in time and the bulk viscosity can be esti-
mated as the time average of the relevant flux divided by the
perturbation strength. The other possible route is the dynami-
cal NEMD in which a set of statistically uncorrelated repli-
cas of the equilibrium system are subjected for t0 to the
perturbation field and the evolution of the ensemble can be
followed in time under the perturbed dynamics. The dynami-
cal method is superior to the stationary method because not
only steady state information can be obtained but also the
transient behavior can be fully characterized. Moreover,
within the dynamical NEMD, the subtraction technique can
be used to perform the zero field strength limit and to extract
the value of the linear transport coefficient. Another advan-
tage of the dynamical method is that one can apply an im-
pulsive perturbation rather than a periodic one. Since the
system is perturbed for a very short period of time �one step
of our discrete dynamics� we do not need to introduce a
thermostatting mechanism to perform a meaningful experi-

ment. Using dynamical NEMD with the subtraction tech-
nique and an impulsive form of the perturbation, we were
able to explore a large range of perturbation strength and
carefully study the small field regime. We have found a per-
fect agreement between the NEMD and the Green-Kubo es-
timates of the bulk viscosity. These estimates are also in
agreement with previous values obtained by the Green-Kubo
formula for various system sizes, while they do not agree
with previous NEMD studies conducted by the stationary
NEMD method. Finally, by removing the thermodynamic
contribution to the viscosity, we show that the Lennard-Jones
fluid at triple point exhibits a large linear regime, in agree-
ment with the results for the shear viscosity �34�.

APPENDIX: PERTURBATION ASSOCIATED TO
VISCOUS FLUX: “DOLL’S”

In this section we will compute the response in the veloc-
ity field to the “Doll’s” perturbation. By a straightforward
application of the linear response theory we will find the
result in Eq. �14�. It proves that the “Doll’s” perturbation is
the perturbation producing every kind of viscous flux.

Let us consider a system of N particles of mass m with
Hamiltonian of such a system will be

Ĥ�0� = �
i=1

N
p�̇ i

2

2m
+ �

j�i

N

���r�ij�� , �A1�

where r�ij =r�i−r� j and ��r� is the pair potential. We add a
perturbation term of the form:

Ĥ�I���,t� = �
V

�= �r��:�= �r�,t�dr� , �A2�

where V is the volume of the system, �= �r�� is a local dynami-
cal variable, and �= �r� , t� is the external field, dependent on
time t and space r�. We assume that �= is proportional to a
small parameter 
 defining the magnitude of the perturbation.

The linear response theory states that the effect of Ĥ�I� on a

given observable Ô of the system is

O�r�,t� = �Ô�0 − ��
0

	

d��
V

ds��Ô�0� ,0��̇= �s�,���0�:�= �r� − s�,t − ��

+ O�
2� . �A3�

In the present case, Ĥ�I� is given by Eq. �13�, therefore we set

�= =�i
Nr�ip� i��r�i−r�� and �= = ��� u��r� , t��T.

We have to calculate the velocity field v� for the system
subjected to the perturbation. By following the Irving-
Kirkwood theory, we can identify this field by exploiting the
equation:

J�m�r�,t� = m�r�,t�v��r�,t� = �g��r���t,

where we have introduced the flux of momentum J�m and the
corresponding dynamical variable g�:
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g��r�� = �
i

N

mr�̇i��r�i − r�� . �A4�

Expanding the last expression in series of the small param-
eter 
, we find:

v��r�,t� =
J�m�r�,t�
m�r�,t�

=
J�m

�I��r�,t� + O�
2�

m�0��r�,t� + m�I��r�,t� + O�
2�

=
V

mN
J�m

�I��r�,t� + O�
2� ,

where we have assumed that in the limit 
→0: J�m�r� , t�→0
and m�r� , t�→ mN

V . Now, by applying the linear response
theory Eq. �A3�, we find the following equation for the �
component of the field v�:

v��r�,t� = −
V

mN
��

0

	

d��
V

ds��g��0� ,0��̇���s�,���0

���u��r� + s�,t − �� + O�
2� .

Finally, by performing an integration by parts we obtain

v��r�,t� =
V

mN
��

0

	

d��
V

ds��g��0� ,0����̇���s�,���0

�u��r� − s�,t − �� + O�
2� ,

which is a convolution in space and time. Its Fourier trans-
form is

ṽ��k�,�� = ����k�,��ũ��k�,�� , �A5�

where

����k�,�� =
V

mN
��

0

+	

d�� ds�ei�−k�·s�+���

��g��0� ,0����̇���s�,���0

= −
V

mN
��

0

+	

d�ei���g��0� ,0�����̇��̃��k�,���0,

where we have performed the integral in ds� in the second last
equality.

In order to evaluate ����k� ,��, we have to calculate the

Fourier transform ����̇��̃�. In the following equation, we
report the result of this calculation that will be demonstrated
at the end of this paragraph. In the case with k�a, where “a”
is the mean free path, we will find

����̇��̃��k�,�� = − ġ̃��k�,t� − ik� · �
i

N

�ik� · r�̇i��r�ip� i���e−ik�·r�i.

�A6�

With the aid of the last equation, we can determine ���,
defined in Eq. �A5�, in the limit k→0:

lim
k→0

����k�,�� =
V

mN
��

0

+	

d�ei���g��0� ,0�ġ̃��k� = 0,���0

= −
V

mN
��

0

+	

d�i�ei���g��0� ,0�g̃��k� = 0,���0.

�A7�

The ensemble average �g��0� ,0�g̃��k� =0,���0 can be calcu-
lated as follows:

�g��r�,0�g̃��k� = 0,���0 = �g��r�,0� � ds�g��s�,���
0

=��
i

N

mṙi���r�i − r���
j

N

mṙj�����
0

,

where we have used the definition of g� given by Eq. �A4�.
Now, we note that the quantity � j

Nmṙj���� corresponds to the
total momentum of the system, therefore it is independent of
the time. On the other hand, the overall average on the equi-
librium ensemble has to be r� independent as well. Therefore
the following relation holds:

�g��r�,0�g̃��k� = 0,���0 =
1

V
�

V

dr���
i

N

mṙi���r�i − r���
j

N

mṙj��
0

=
1

V��
i

N

mṙi��
j

N

mṙj��
0

=
m

V��
i

N

mṙi�
2 �

0

��� = m
N

�V
���.

In the last equality we have also applied the equipartition
theorem �mṙi�

2 �0=KbT= 1
� . By replacing the last result in Eq.

�A7� we finally find:

lim
k→0

�= �k�,�� = − �
0

+	

d�i�ei��I= = − i��
−	

+	

d�ei������I=

= − i��̃I= = � d̃�

dt
�I= = �̃I= = I= ,

where � stands for the step function. By comparing this re-

lation to Eq. �A5� we obtain the final result v�̃�0� ,��
=u�̃�0� ,�� that proves the correspondence between the field u�
involved in the “Doll’s” perturbation and the macroscopic
velocity field v� induced in the system by the perturbation.

In order to complete the paragraph we have to demon-
strate equation Eq. �A6�. First of all, we calculate the deriva-

tive �=̇ as follows:

�̇= �r�,t� = �
i

N

�r�̇ip� i + r�ip�̇ i���r�i − r�� + r�ip� i�r�̇i ·
�

�r�i

��r�i − r���
= �

i

N �mr�̇ir�̇i − r�i�
j�i

N
����r�ij��

�r�i

− r�ip� i�r�̇i · �� ����r�i − r�� ,

where we have applied the relation �
�r�i

��r�i−r��=−�� ��r�i−r��.
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Then, we calculate the Fourier transform on the space
variable r�:

�̇=̃ �k�,t� = �
i

N �mr�̇ir�̇i − r�i�
j�i

N
����r�ij��

�r�i

+ ir�ip� i�r�̇i · k���eik�·r�i.

�A8�

By focusing on the former equation term that involves the
derivative of the potential, we find:

�
i

N

�
j�i

N

r�i

����r�ij��
�r�i

eik�·r�i

=
1

2�
i

N

�
j�i

N �r�i

����r�ij��
�r�i

eik�·r�i + r� j

����r� ji��
�r� j

eik�·r�j�
=

1

2�
i

N

�
j�i

N

�r�ie
ik�·r�i − r� je

ik�·r�j�
����r�ij��

�r�i

=
1

2�
i

N

�
j�i

N

eik�·r�j�r�ie
ik�·r�ij − r� j�

����r�ij��
�r�i

=
1

2�
i

N

�
j�i

N

eik�·r�j�r�ij + r�i�ik� · r�ij + O�k� · r�ij
2���

����r�ij��
�r�i

.

By means of this result and under the hypothesis of small
wave vector limit ka�1, Eq. �A8� can be written as follows:

�̇=̃ �k�,t� = �
i

N

mr�̇ir�̇ie
ik�·r�i −

1

2�
j�i

N

eik�·r�jr�ij

����r�ij��
�r�i

+ �
i

N

�ik� · r�̇i��r�ip� i�eik�·r�i. �A9�

Equation �A9� implies that the Fourier transform of the gra-

dient of �=̇ fulfills the following equation:

��� · �̇=˜ ��k�,��

= �− ik� · ��
i

N

mr�̇ir�̇ie
ik�·r�i −

1

2�
j�i

N

eik�·r�jr�ij

����r�ij��
�r�i

��
− ik� · �

i

N

�ik� · r�̇i��r�ip� i�eik�·r�i.

This result corresponds to the required Eq. �A6� providing

that the quantity in square brackets is equal to −g�̃̇�k� , t�. This
can be easily verified as follows:

g�̃̇�k�,t� =
d

dt
�
i=1

N

mr�̇ie
ik�·r�i = �

i=1

N

�mr�̇i�ik� · r�̇i� + mr�̇i�eik�·r�i

= �
i=1

N �mr�̇i�ik� · r�̇i� − �
j�i

N
����r�ij��

�r�i
�eik�·r�i

= �
i=1

N

ir�̇ · �mr�̇ir�̇i�eik�·r�i

−
1

2�
i=1

N

�
j�i

N � ����r�ij��
�r�i

eik�·r�i +
����r� ji��

�r� j

eik�·r�j�
= �

i=1

N

ik� · �mr�̇ir�̇i�eik�·r�i −
1

2�
i=1

N

�
j�i

N
����r�ij��

�r�i

�eik�·r�i − eik�·r�j�

= �
i=1

N

ik� · �mr�̇ir�̇i�eik�·r�i −
1

2�
i=1

N

�
j�i

N
����r�ij��

�r�i

eik�·r�j�eik�·r�ij − 1�

= �
i=1

N

ik� · �mr�̇ir�̇i�eik�·r�i −
1

2�
i=1

N

�
j�i

N
����r�ij��

�r�i

�eik�·r�j	ik� · r�ij + O��ik� · r�ij�2�
 .

In the limit ka�1 we finally get

g�̃̇�k�,t� = ik� · �
i=1

N

�m�r�̇ir�̇i��eik�·r�i +
1

2�
i=1

N

�
j�i

N
����r�ij��

�r�i

eik�·r�j�ik� · r�ij�

= �ik� · ��
i=1

N

�mr�̇ir�̇i�eik�·r�i +
1

2�
i=1

N

�
j�i

N

r�ij

����r�ij��
�r�i

eik�·r�j�� .
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